The biceps femoris (BF) muscle has the highest injury incidence. Clinical assessments and magnetic resonance imaging (MRI) are routinely used to diagnose a given injury. We tested the possibilities of a new technology tensiomyography as a potential screening test (diagnostic and classification purposes) to assess the functional differences between injured and non-injured BF muscles. The results show that tensiomyography has a high predictive ability to discriminate between injured and non-injured BF non-invasively and functionally and that it can be reliably used as a complementary screening test in the diagnosis of BF injuries.

Read full article Here!

Therefore, the present study aimed to investigate the effects of applying tissue flossing to the thigh on bilateral countermovement jump performance and contractile properties (tensiomyography) of vastus lateralis (VL) muscle. Nineteen recreational athletes (11 males; aged 23.1 ± 2.7 years) were randomly assigned to days of flossing application (3 sets for 2 min of flossing with 2 min rest between sets) with preset experimental pressure (EXP = 95 ± 17.4 mmHg) or control condition (CON = 18.9 ± 3.5 mmHg). The first part of the measurements was performed before and after warm-up consisting of 5 min of cycling followed by dynamic stretching and specific jumping exercises, while the second part consisted of six measurement points after flossing application (0.5, 3, 6, 9, 12, 15 min). The warm-up improved muscle response time (VL = -5%), contraction time (VL = -3.6%) muscle stiffness (VL = 17.5%), contraction velocity (VL = 23.5%), jump height (13.9%) and average power (10.5%). On the contrary, sustain time, half-relaxation time and take-off velocity stayed unaltered. Flossing, however, showed negative effects for muscle response time (F = 18.547, p < 0.001), contraction time (F = 14.899, p < 0.001), muscle stiffness (F = 8.365, p < 0.001), contraction velocity (F = 11.180, p < 0.001), jump height (F = 14.888, p < 0.001) and average power (F = 13.488, p < 0.001), whereas sustain time, half-relaxation time and take-off velocity were unaffected until the end of the study protocol regardless of condition assigned and/or time points of the assessment. It was found that the warm-up routine potentiated neuromuscular function, whereas the flossing protocol used in the current study resulted in fatigue rather than potentiation.

 

Read full article Here!

The hamstrings (HS) muscle group plays a fundamental role in maintaining knee stability, thus contributing to the prevention and rehabilitation of lower limb musculoskeletal injuries. However, little is known about HS structural and functional adaptations after periods of prolonged inactivity. Our purpose was to investigate the HS morphological and contractile properties changes during 10 days of bed rest (BR).
Ten young healthy males underwent a 10-day BR. HS cross-sectional area (CSA) (at 30%, 50%, and 70% of femur length), biceps femoris long head (BFlh) architecture were assessed by ultrasound imaging after 0 (BR0), 2 (BR2), 4 (BR4), 6 (BR6) and 10 (BR10) days of BR, while BFlh contractile properties (radial twitch displacement (Dm); contraction time (Tc)) were evaluated at the same time points by tensiomyography. HS muscle volume was assessed by magnetic resonance imaging at BR0 and BR10.

Read full article Here!

Tensiomyography (TMG) is a noninvasive tool used to assess contractile tissue properties during an isometric muscle contraction. Owing to portability and versatility for assessing muscle parameters, TMG may be of value to the strength and conditioning (S&C) specialist. The purpose of this systematic review was to investigate the reliability of TMG measurements. PubMed, PEDro, MEDLINE, and Cochrane databases were searched up to September 2021 by 2 authors, who independently examined all titles and abstracts to determine initial eligibility. Inclusion criteria included any study assessing the reliability of TMG parameters, published in English, published in a peer-reviewed scientific journal, and included participants with no significant musculoskeletal conditions. Exclusion criteria included the following elements: TMG assessment process not clearly delineated, reliability of specific TMG parameters not clearly defined, and statistical methods for determining reliability not clearly defined. All studies underwent a quality assessment using the Modified Downs and Black checklist for assessing quality studies, and results were extracted from qualified articles. In total, 635 studies were identified, with 16 studies retained after full-text reviews. Twelve studies had poor quality, whereas 4 had fair quality. Noninvasive TMG has good to excellent absolute and interrater reliability for measuring the properties of skeletal muscles.

Read full article HERE!

The purpose of the study was to compare sex adaptations in hypertrophy, strength and contractile properties of upper and lower-body muscles induced by resistance training (RT). Eighteen RT untrained male (MG) and female (FG) students  undervent 7 weeks of biceps curl and squat training (2 days/week, 60–70% repetition maximum, 3–4 sets, 120 s rest intervals, reps until muscular failure). At baseline and final measurement, thickness and cross-section area, one-repetition maximum and tensiomyography parameters (contraction time − Tc and radial displacement − Dm) of elbow flexors (biceps brachii) and knee extensors (4 quadriceps muscles) were evaluated. Although MG tends to display greater absolute strength gains for upper- (p = 0.055) and lower-body (p = 0.098), for relative changes ANCOVA revealed no sex-specific differences for either of the tested variables. Significant hypertrophy was observed for all tested muscles, except for vastus intermedius in FG (p = 0.076). The Dm significantly decreased for biceps brachii (MG by 12%, p < 0.01 and FG by 13.1%, p < 0.01) and rectus femoris (MG by19.2%, p < 0.01 and FG by 12.3%, p < 0.05), while Tc values remain unchanged. These results indicate that initial morphological, functional and contractile alterations following RT are similar for males and females, and that there are no specific sex adaptations either for the upper- or lower-body muscles.

 

Read full article HERE!

The mechanical properties of knee flexors and extensors in 15 collegiate male soccer players following different warm-up protocols [small-sided games (SSG), dynamic (DYN), and plyometric (PLY)] were evaluated. Tensiomyography (TMG) was used to assess contraction time (Tc), delay time (Td) and maximal displacement (Dm) of the rectus femoris (RF) and biceps femoris (BF) of both legs before and after each warm-up, while countermovement jump height variables, 20 m sprint, t-test and sit-and-reach were measured following the warm-ups. TMG was analyzed using a three-way [condition × time × leg] ANOVA, while performance variables were analyzed with a repeated measures ANOVA. Main effects of time were observed for BF-Tc (p = 0.035), RF-Td (p < 0.001), and BF-Td, (p = 0.008), and a main effect of condition was seen for RF-Tc (p = 0.038). Moreover, participants’ 20 m sprint improved following SSG (p = 0.021) compared to DYN and PLY. Sit-and-reach was greater following PLY (p = 0.021). No significant interactions were noted for the measured TMG variables. Warm-up-specific improvements were demonstrated in sprint speed and flexibility following SSG and PLY, respectively. The present study revealed changes in certain TMG measures following the warm-ups that suggest enhanced response of lower leg muscles regardless of specific activities used.

Get full article here!

The aim of this study was to investigate the effect of set configuration on mechanical performance, neuromuscular activity, metabolic response, and muscle contractile properties. A battery of tests was performed before and after each protocol: (a) tensiomyography (TMG), (b) blood lactate and ammonia concentration, (c) countermovement jump, and (d) maximal voluntary isometric contraction in the squat exercise. Force, velocity, and power output values, along with electromyography data, were recorded for every repetition throughout each protocol. The 3 × 8 protocol induced greater lactate and ammonia concentrations, greater reductions in jump height, and greater impairments in TMG-derived velocity of deformation after exercise than 6 × 4. Therefore, implementing lower-repetition sets with shorter and more frequent interset rest intervals attenuates impairments in mechanical performance, especially in the final repetitions of each set. These effects may be mediated by lower neuromuscular alterations, reduced metabolic stress, and better maintained muscle contractile properties.

Read full article here!

After 1 week of body mass maintenance (45 kcal/kg), 28 male college students not performing resistance training were randomized to either the energy-restricted (ER, 30 kcal/kg, n = 14) or the eucaloric control group (CG, 45 kcal/kg, n = 14) for 6 weeks. Both groups had their protein intake matched at 2.8 g/kg fat-free-mass and continued their habitual training throughout the study. Body composition was assessed weekly using multifrequency bioelectrical impedance analysis. Contractile properties of the m. rectus femoris were examined with Tensiomyography and MyotonPRO at weeks 1, 3, and 5 along with sleep (PSQI) and mood (POMS).

Read full article here!

The purposes of this study were to determine if there are sex-based differences in muscular contractile properties as measured by tensiomyography (TMG) and to determine if plyometrics or the isometric midthigh pull are effective methods of eliciting postactivation potentiation (PAP). Thirty strong, resistance-trained men (n = 15) and women (n = 15) underwent 3 testing days consisting of a PAP or control protocol, and pre-TMG and post-TMG and performance testing. Contractile properties from TMG were assessed in the gastrocnemius medial head (GMH), gluteus maximus (GM), rectus femoris (RF), and biceps femoris (BF).

 

Get full article here!

The objective of this study was to evaluate the reliability of four methods of assessing vastus lateralis (VL) stiffness, and to describe the influence of structural characteristics on them. The stiffness of the dominant lower-limb’s VL was evaluated in 53 healthy participants (28.4 ± 9.1 years) with shear wave elastography (SWE), strain elastography (SE), myotonometry and tensiomyography (TMG). The SWE, SE and myotonometry were performed at 50%, and TMG was assessed at 30%, of the length from the upper pole of the patella to the greater trochanter. The thickness of the VL, adipose tissue and superficial connective tissue was also measured with ultrasound. Three repeated measurements were acquired to assess reliability, using intraclass correlation coefficients (ICC). Pearson’s correlation coefficients were calculated to determine the relationships between methodologic assessments and between structural characteristics and stiffness assessments of the VL.

Read full article here!